Evaluates imputations methods by NRMSE or AUC
benchmark_imputation( scm = NULL, assay = "score", sparse_prop = seq(0.1, 0.9, 0.1), iterations = 3, imp_methods = c(iPCA = function(...) impute_regions(type = "iPCA", ...), RF = function(...) impute_regions(type = "RF", ...), kNN = function(...) impute_regions(type = "kNN", ...)), type = "RMSE" )
| scm |
|
|---|---|
| assay | string; name of an existing assay. Default = "score" |
| sparse_prop | numeric; A sparsity proportion between 0 and 1. E.g. 0.1 replaces 10% of the matrix with NA |
| iterations | integer; Number of iterations to test |
| imp_methods | closure; The imputation methods to compare. |
| type | character; descriptive statistic. Can be either "AUC" or "RMSE". Default "RMSE" |
ggplot; The graph showing the NRMSE for each imputation method at each sparsity
Does stuff
data('scMethrix_data') if (FALSE) { scMethrix_data <- impute_regions(scMethrix_data, new_assay="impute",type="RF") benchmark_imputation(scMethrix_data, assay="impute", sparse_prop = c(0.1,0.5,0.85)) }